Contents

3	1 TERMS AND DEFINITIONS	3
4	7 TIMING BEHAVIOR	4
5	7.1 LOW_POWER_timer	4
6	7.2 TWU_Start_quiet	
7	7.3 TWU_Start_partial	
8	7.4 TWU_Indication	6
9	7.5 TWU_Forwarding	7
10	7.6 TWU_Forwarding_Indication	7
11	7.7 TWU_WakeIO	7
12	8 POWER MANAGEMENT CLIENT	8
13	8.1 Overview	8
14	8.2 Service Primitives and Interfaces	8
15	8.2.1 LowPowerEntryLocal.request	
16	8.2.2 LowPowerEntryLocal.confirm	
17	8.2.3 LowPowerEntryLocalFail.indicaton	
18	8.2.4 WakeupLocal.request	
19 20	8.2.5 Wakeup.request	
20	8.2.7 Inhibit.indication	
22	8.2.8 WakeupForward.indication	
23	8.2.9 WakeupForward.request	
24	8.3 Command Definitions	
25	8.3.1 Wake-Up Pulse (WUP)	10
26	8.4 PHY power control	
27	8.4.1 PHY reset and initialization	
28	8.4.2 Low Power	
29	8.4.3 Wake-up	
30 31	8.4.4 Variables	
32	22 RECONCILIATION SUBLAYER (RS) AND MEDIA INDEPENDENT INTERFAC	
33	(MII)	
34	22.2 Functional specifications	
35	22.2.2 MII signal functional specifications	15
36	78 LPI ASSERTION AND DETECTION	
37	78.1.4 PHY types optionally supporting EEE	
38	78.3 Capabilities Negotiation	
39	147 PHYSICAL CODING SUBLAYER (PCS), PHYSICAL MEDIUM ATTACHMEN	
40	(PMA) SUBLAYER AND BASEBAND MEDIUM, TYPE 10BASE-T1S	17
41	147.2 Service primitives and interfaces	
42	147.2.7 PMA_WUT.request	
43	147.2.8 PMA_WUT.indication	
44	147.3 Physical Coding Sublayer (PCS) Functions	
45	147.3.1 PCS Reset function	
46	147.3.2 PCS Transmit	19

1	147.3.3 PCS Receive	
2		
3	147.4.2 PMA Transmit function	
	147.4.5 WUT Detect function	
5	148 PLCA RECONCILIATION SUBLAYER (RS)	
6	148.4 PLCA Reconciliation Sublayer Operation	
7	· ·	
8	148.4.5 PLCA Data	
9	148.4.7 PLCA Pause	
0		

1 Terms and Definitions

2 Network segment states:

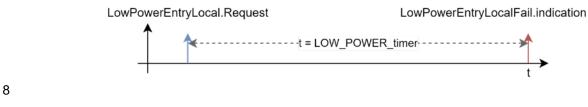
Quiet Link Segment	A 10BASE-T1S network segment in which there is no activity on the physical medium.
Partial Link Segment	A 10BASE-T1S network segment with at least one node transmitting on the physical
	medium. (Including PLCA beacons)

1 7 Timing Behavior

2 The low power entry and wake-up process in a PHY shall fulfill the following requirements 1:

	Min	Тур	Max	Units
LOW_POWER_timer	-	-	2	ms
TWU_Start_quiet	-	-	2	ms
TWU_Start_partial	-	-	TWU_Start_quiet	N/A
_			(max) +	
			maxPLCACycleTime	
TWU_Detection	-	-	2	ms
TWU_Indication	-	-	17	ms
TWU_Forwarding	-	-	1	ms
TWU_Forwarding_Indication			10	us
TWU_WakeIO	-	-	1	ms

Table 7-1--Low power entry, exit, and forward timing requirements


3

4 **7.1 LOW_POWER_timer**

5 The maximum allowed time for a PHY node or SWITCH to transition to LOW_POWER state from when a

6 LowPowerEntryLocal.Request is received shall be less than LOW_POWER_timer. Expiration of the

7 LOW_POWER_timer shall be indicated via LowPowerEntryLocalFail.indication.

Figure 7-1--LOW_POWER_timer diagram

9 7.2 TWU_Start_quiet

10 The maximum allowed time for a PHY node or SWITCH node to commence transmission of WUP on a quiet network

segment from when a Wakeup.request or WakeupForward.request is received shall be less than TWU_Start_quiet.

12 Note this time assumes that the device requested to transmit the WUP is not in a low power state. The boot time of devices in low power state is outside the score of this specification

13 devices in low power state is outside the scope of this specification.

¹ For the mentioned timer values a 10 % tolerance is expected.

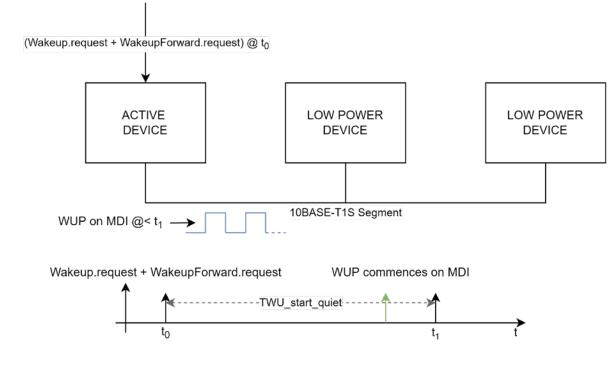


Figure 7-2--TWU_Start_quiet diagram

2 7.3 TWU_Start_partial

The maximum allowed time for a PHY node or SWITCH to commence transmission of WUP on a partial network segment from when a Wakeup.request or WakeupForward.request is received shall be less than TWU_Start_partial. A node operating in PLCA mode with plca_status = OK transmits the WUP during the node's transmit opportunity. This case sets the maximum allowed time which is:

7

1

- 8 TWU_Start_partial < TWU_Start_quiet (max) + maxPLCACycleTime
- 9 maxPLCACycleTime is measured in seconds and is computed as follows:

10

11
$$maxPLCACycleTime = \{\sum_{i=1}^{aPLCANodeCount}(aPLCAMaxBurstCount(i) * ((MAX_FRAME_SIZE(i) * bit_time) + IPG(i) + MDI_input_to_CRS_deasserted(i))\} + beacon_timer$$

13 where

- 14 MAX_FRAME_SIZE is the maximum frame size supported by the node, measured in bits, and is calculated as
- 15 MAX_FRAME_SIZE = maxFrameSizeLimit * 8
- 16 And all other variables are defined in [1]

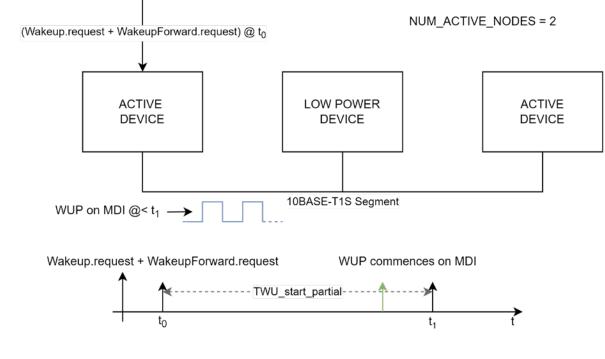


Figure 7-3--TWU_Start_partial diagram

2 7.4 TWU_Indication

The maximum allowed time for Wakeup.indication to be asserted by a device initially in low power state from when
 WUP transmission commenced on the network segment shall be less than TWU_Indication. The TWU_Indication is

5

1

7

- 8 The maximum allowed time for detection of a valid WUP on the MDI shall be less than TWU_Detection.
- 9 T_Powersupply_stable is the time from when the device requests power until the power supply is stable.
- 10 T_Initialization the time from when the power supply's stable voltage is reached until Wakeup.Indication is generated.

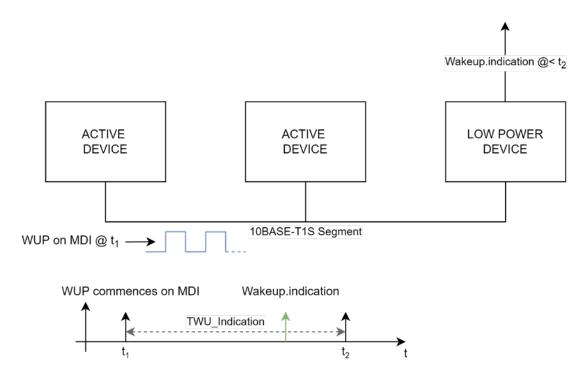


Figure 7-4--TWU_Indication diagram

2 7.5 TWU_Forwarding

For multiport devices it is possible to forward a wake-up from one physical port to another physical port.
 TWU_Forwarding is the time from receiving a wake-up WakeupForward.Indication on one physical port until a
 WakeupFoward.Request is generated on another physical port.

6 **7.6 TWU_Forwarding_Indication**

TWU_Forwarding_Indication is the time from receiving a Wakeup.request or Wakeup.indication to generation of a
 WakeupForward.Indication.

9 7.7 TWU_WakelO

- 10 The time TWU_WakeIO is defined from the generation of a Wakeup.request in one device to the reception of the
- 11 corresponding Wakeup.indication in the other device when both devices are connected by using the electrical wake-12 up interface pins (for instance WAKE_FWRD or WAKE_IN_OUT).
- 13

1 8 Power Management Client

2 8.1 Overview

The optional Power Management Client enables power savings during periods where one or more nodes on the 10BASE-T1S link segment are not required to be operational. It controls the entry of the local PHY into a low power state and the coordinated exit from the low power state of all supporting nodes connected on the link segment.

6 The communication of the PM Client to higher layers is not specified here. It may be through SMI, the Wake-up7 Electrical Interface, or other appropriate methods. If an SMI interface is used to control the PM Client then the

8 minimum set of registers defined in section 8.6 shall be supported. The PM Client communicates with the PHY through

9 the RS described in section 148 and utilizes the primitives defined in section 8.2.

Communication of wake-up events between PM Clients is achieved through the WakeupForward primitives. The
 Wake-up Electrical Interface of section 5 or other appropriate means is used to implement this interface.

12 The state machine for control of the local PHY power state is described in section 8.4. The command to exit all supporting PHYs on the mixing segment from low power state is described in section 8.3.

14 **8.2 Service Primitives and Interfaces**

Besides the service primitives and interfaces, specified in [1], new service primitives are provided by the Reconciliation Sublayer (RS) to the PM Client. These services are needed to realize the low power entry and wakeup behavior.

The low power control information is transferred between the SMI, PM Client, RS, PCS, PMA, and physical devicepins.

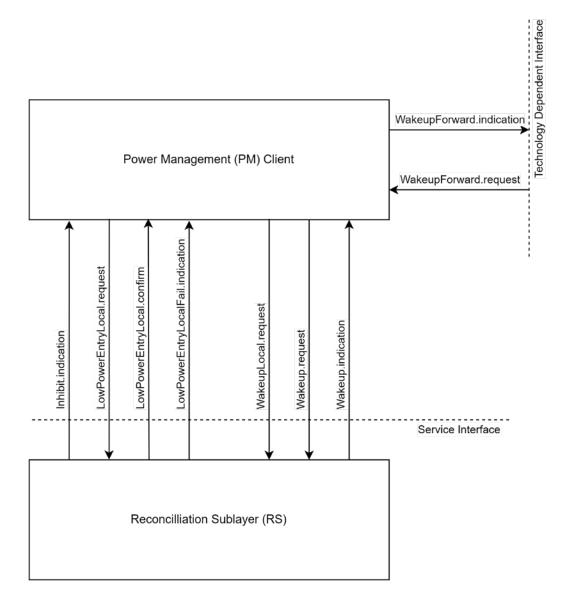


Figure 8-1--Added PM Client and RS interlayer service interfaces

2 8.2.1 LowPowerEntryLocal.request

The purpose of the *LowPowerEntryLocal.request* service primitive is to shut down the Physical Layer in a controlled
 manner without corrupting ongoing transmissions on the link segment. The activation of
 LowPowerEntryLocal.request for the purpose of network power management is the responsibility of the PM Client.

6 8.2.2 LowPowerEntryLocal.confirm

The purpose of the optional *LowPowerEntryLocal.confirm* primitive is to acknowledge the Physical Layer has
 successfully entered the low power state.

9 8.2.3 LowPowerEntryLocalFail.indicaton

The purpose of the optional LowPowerEntryLocalFail.indication is to indicate an unsuccessful attempt to put the
 Physical Layer into a low power state.

1 8.2.4 WakeupLocal.request

2 The purpose of the WakeupLocal.request service primitive is to transition the Physical Layer from a low power state.

3 8.2.5 Wakeup.request

- 4 The purpose of the Wakeup.request service primitive is to request a WUP be communicated to all nodes within the
- 10BASE-T1S link segment. If the device is in a low power state this primitive infers a WakeupLocal.request followed
 by a Wakeup.request.
- 7 8.2.6 Wakeup.indication

8 The purpose of the *Wakeup.indication* service primitive is to indicate a detected wake-up event. This includes a wake-9 up over a network segment as well as over a local wake-up pin.

10 8.2.7 Inhibit.indication

11 Signals the state of an optional power supply inhibit interface.

12 8.2.8 WakeupForward.indication

- 13 (optional)
- 14 This service primitive signals that a wake-up forwarding event has been received over wake I/O functionality or MDI.

15 8.2.9 WakeupForward.request

16 (optional)

17 This service primitive signals that a wake-up event has been forwarded to this port as a consequence of a18 WakeupForward.indication on another port or through the wake I/O functionality.

19 8.3 Command Definitions

20 This specification defines one command which is used to request a wake-up over a 10BASE-T1S link segment.

21 8.3.1 Wake-Up Pulse (WUP)

The WUP is a command to indicate a wake-up request to all nodes on the 10BASE-T1S link segment. It can be sent by any node PHY or switch PHY to distribute the wake-up request over a link segment. The command can be sent on either a quiet or partial link segment.

The WUP command is transmitted directly onto the MDI by the 10BASE-T1S PHY. The WUP shall be comprised of a SUSPEND, Wake-Up Tone (WUT), COMMIT, and ESD/ESDOK sections. WUT is polarity independent. It may start with either a low or a high period.

	<	twup	\longrightarrow
	T T		EOF SILENCE
1	L	YUP	

Figure 8-2--WUP Command

The SUSPEND section of the WUP pattern shall be comprised of six, DME encoded T symbols as defined in Table
 147-1. The timing of constituent SUSPEND symbols should conform to the timing specifications outlined in clause
 147.

5 The WUT section of the WUP is comprised of 12 periods of a 625kHz tone.

The COMMIT section of the WUP pattern is comprised of 24 to 26 DME encoded J symbols. The timing of constituent
 COMMIT symbols should conform to the timing specification outlined in clause 147 of [1].

8 The total length of the WUP shall conform to the timings outlined in Table 8-1—WUP timing. The transmission of

9 the WUP must conform to the timing and electrical specifications of [1] clause 147 including updates to that clause

10 outlined in this document.

Table 8-1—WUP timing

Symbol	Minimum	Typical	Maximum	Units
twup	32.0	32.4	32.8	us

11

All other nodes on the IEEE 10BASE-T1S network segment do not commence any transmissions while a WUPcommand is active on the MDI.

14 The detection of the WUP command is left to the implementer.

15

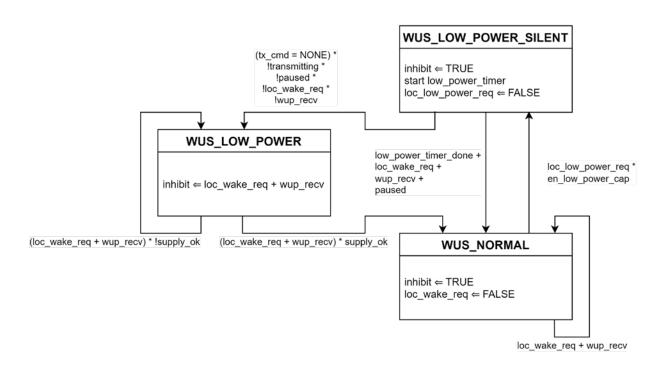
PHYs with multi-speed capabilities shall use the specified WUP pattern corresponding to the speed the PHY is
 configured to operate in. The speed configuration process depends on the application and can be set through means of
 pin-strapping, auto negotiation result, register configuration, OTP fuses or similar.

19

If WUP is sent prior to auto negotiation results are available, then WUP should be the minimum speed advertised by the auto negotiation.

22

Note, it is only guaranteed that a WUP can be detected reliably if the responder PHY devices supports and operates in
 the WUP associated speed mode.²


² For example, a WUP transmitted by a PHY operating in 10BASE-T1S mode is not guaranteed to be detected by a 100BASE-T1 device and vise-versa.

1 8.4 PHY power control

2 The following state diagram shows the power states of a 10BASE-T1S Physical Layer.

3

4

5

Figure 8-3--PHY power mode state diagram

6 8.4.1 PHY reset and initialization

After a device reset, the PHY may automatically assert loc_wake_req. This may optionally trigger a WUP transmission
 on the network segment.

9 8.4.2 Low Power

10 In case the PHY is not in WUS_LOW_POWER state and a loc_low_power_req is asserted the PHY will enter WUS_LOW_POWER_SILENT state and start the low_power_timer. In the WUS_LOW_POWER_SILENT state the 11 12 PHY will wait until the PHY has completed all transmissions and no active wake-up requests are detected before 13 transitioning into WUS_LOW_POWER state. The successful transition to WUS_LOW_POWER state may be 14 communicated via the optional LowPowerEntryLocal.confirm primitive. In this WUS LOW POWER state only parts 15 of the device required for the detection conditions that result in the transition out of this state are required to be kept 16 active. Other parts of the device may be switched to low power consumption modes. If the conditions for transitioning 17 into WUS LOW POWER state are not met before low power timer done or a wake-up request is received, the PHY 18 transits back to WUS NORMAL state and may be communicated optional via the 19 LowPowerEntryLocalFail.indication.

20 8.4.3 Wake-up

In case the PHY is in WUS_LOW_POWER state and a Wakeup.request is detected the PHY will inhibit the power supply from shutting down. Once the power supply is within operating range the PHY will enter WUS_NORMAL

23 power state.

- 1 The signaling of a *Wakeup.request* is achieved by transmitting a WUP on the link segment at the appropriate time.
- *Wakeup.indication* shall be asserted upon wake-up events. This service primitive is generated in any of the following
 cases:
- 4 A valid WUP (wup_recv) is detected over MDI. A valid WUP is defined in 8.3.1.
- 5 A valid local wake-up (loc_wake_req) is asserted.
- 6 The WUP detection process is implementation specific. A detected WUT communicated via PMA_WUT.indication7 may be used as part of this process.

8 8.4.4 Variables

9	wup_recv	
10 11 12		This variable is set according to the status parameter of the PMA_WUT.indication primitive. When status is DETECTED this variable is set to TRUE. This variable is set to FALSE when the PHY Power Mode state machine enters WUS_NORMAL state.
13		Values: TRUE or FALSE
14	loc_low_power_r	req
15 16 17		This variable is set to TRUE if a low power state is requested by the LowPowerEntryLocal.request service primitive. The variable is set to FALSE when the PHY Power Mode state machine enters WUS_LOW_POWER_SILENT state.
18		Values: TRUE or FALSE
19	loc_wake_req	
20 21 22		This variable is set to TRUE if a local wake-up is requested by the WakeupLocal.request service primitive. The variable is set to FALSE when the power state controller returns to WUS_NORMAL state.
23		Values : TRUE or FALSE
24	inhibit	
25		Set to TRUE if the (external) power supply shutdown is inhibited.
26		Values: TRUE or FALSE
27	en_low_power_ca	ap
28		Set to TRUE if the PM Client is supported by the local PHY, otherwise it is set to FALSE.
29		Values: TRUE or FALSE
30	plca_paused	
31		See section 148.4.7.2
32	supply_ok	
33		Set to OK if PHY power supplies are within the operating range of the device.
34		Values: OK or ERROR
35	tx_cmd	
36		See section 148.4.4.2
37	transmitting	
38		See [1] section 147.3.2.2

2 8.4.5 Timers

- 3 LOW_POWER_timer
- 4 See 7.1
- 5

1 22 Reconciliation Sublayer (RS) and Media Independent Interface (MII)

2 22.2 Functional specifications

3 22.2.2 MII signal functional specifications

4 22.2.2.4 TXD (transmit data)

5 Insert the following paragraph after the third paragraph in 22.2.2.4 as follows:

6 When low power wake-up signaling capability is supported and enabled, the RS shall use a combination of TX_EN

7 deasserted, TX_ER asserted, and TXD<3:0> equal to 0100 as shown in Table 22-1 to send WUPRQ as defined in

8 <u>148.4.4.</u>

- 9 *Modify the fourth paragraph in 22.2.2.4 as follows:*
- 10 When TX_EN is deasserted and TX_ER is asserted, values of TXD<3:0> other than 0001, 0010, and 0011, and 0100
- 11 shall have no effect upon the PHY.
- 12 *Change Table 22-1 as follows (unchanged rows not shown):*

Table 22-1—Permissible encodings of TXD<3:0>, TX_EN, and TX_ER

TX_EN	TX_ER	TXD<3:0>	Indication
0	1	0100	WUPRQ request
0	1	01000101 through 1111	Reserved

13

14 22.2.2.8 RXD (receive data)

- 15 *Insert the following paragraph into 22.2.2.8 after the fourth paragraph:*
- 16 When low power wake-up signaling is supported and enabled, the PHY indicates that it is receiving a SUSPEND by
- asserting the RX_ER signal and driving the value 0100 on RXD<3:0> while RX_DV is de-asserted. See 148.4.7 for
 the definition and usage of SUSPEND.
- 19 *Change Table 22-2 as follows (unchanged rows not shown):*

Table 22-2--Permissible encoding of RXD<3:0>, RX_ER, and RX_DV

RX_DV	RX_ER	RXD<3:0>	Indication
0	1	0100	SUSPEND indication
0	1	01000101 through 1111	Reserved

1 78 LPI assertion and detection

2 Delete the following sentence from the first paragraph:

3 LPI signaling on the MII is specified only for 100 Mb/s operation.

4 78.1.4 PHY types optionally supporting EEE

5 Update Table 78-1 as shown below. Unchanged rows are not listed.

PHY or interface type	Clause
10BASE-Te	14
10BASE-T1L	146
10BASE-T1S	<u>147</u>
100BASE-TX	24, 25

Table 78-1 – Clauses associated with each PHY or interface type

6

7 Update Table 78-2 as shown below. Unchanged rows are not listed.

Table 78-2 – Summary of the key EEE parameters for supported PHYs or interfaces

PHY or interface		Γs μs)	Г 4)	ั ต เร)	ר ע)	ſr 1s)
type	Min	Max	Min	Max	Min	Max
10BASE-T1L	20	20	6 000	6 000	250	250
10BASE-T1S	<u>0</u>	<u>0</u>	<u>∞</u>	8	<u>0</u>	<u>0</u>
100BASE-TX	200	200	20 000	22 000	200	200

8

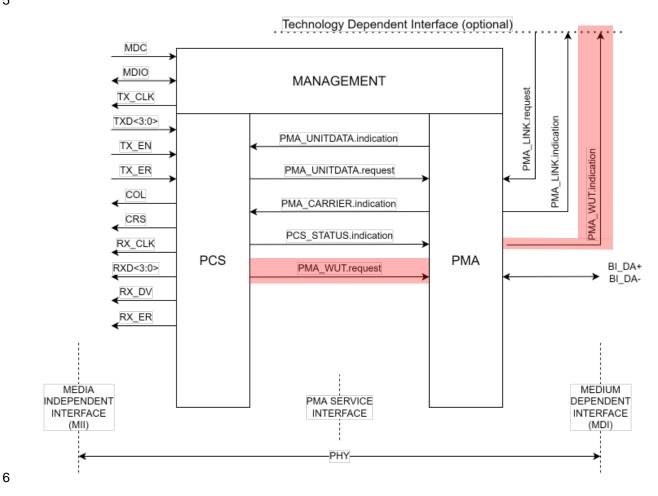
9 78.3 Capabilities Negotiation

10 *Update the first sentence of the first paragraph as follows:*

11 The EEE capability shall be advertised during the Auto-Negotiation stage, except for PHYs that only support fast

wake operation, or PHYs that exchange EEE capability during link training, or 10BASE-T1S PHYs operating in multidrop mode.

14


15

1 147 Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA)

2 sublayer and baseband medium, type 10BASE-T1S

3 147.2 Service primitives and interfaces

- 4 Update Figure 147-2—10BASE-T1S PHY interfaces with this one.
- 5

Figure 147-2—10BASE-T1S PHY interfaces

7

8 Add below items to list of service primitives:

9	PMA_WUT.request(transmit_wut)
10	PMA_WUT.indication(status)

10 11

12

- •
- Add description of new primitives:

13 **147.2.7 PMA_WUT.request**

14 This primitive is generated by the PCS to request the PMA to transmit a WUT.

1 147.2.7.1 Semantics of the primitive

- 2 PMA_WUT.request(transmit_wut)
- 3 The transmit_wut parameter can take on one of the following two values:

4	FALSE	Transmission of a WUT on the medium is not requested
5	TRUE	Transmission of a WUT on the medium is requested

6

7 147.2.7.2 When generated

8 PCS transmit generates this primitive to indicate a change in transmit_wut.

9 147.2.7.3 Effect of receipt

10 The effect of receipt of this primitive is specified in 147.4.2.

11 147.2.8 PMA_WUT.indication

12 Reports when a signal compatible with WUT specified in **8.3.1** is detected on the medium.

13 147.2.8.1 Semantics of the primitive

- 14 PMA_WUT.indication(status)
- 15 The status parameter can take on the following two values:

16	NOT_DETECTED	PMA is not receiving a valid WUT from a remote PHY
17	DETECTED	PMA is receiving a valid WUT from a remote PHY
18		

19 147.2.8.2 When generated

- 20 The PMA generates this primitive to indicate a change in status of the WUT presence detection on the medium.
- 21 147.2.8.3 Effect of receipt
- 22 The effect of receipt of this primitive is specified in 8.4
- 23 147.3 Physical Coding Sublayer (PCS) Functions
- 24 147.3.1 PCS Reset function
- 25 *Replace figure 147-3 with the following.*

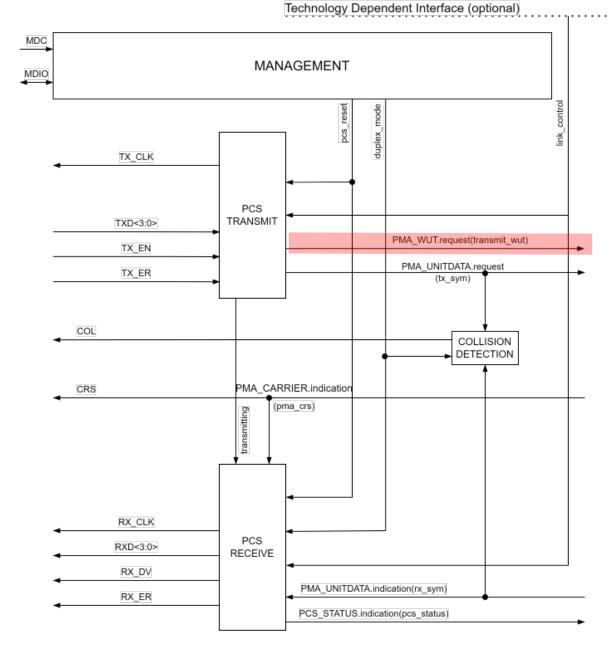


Figure 147-3--PCS reference diagram

1

- 2
- 3 **147.3.2 PCS Transmit**

4 147.3.2.1 PCS Transmit overview

5 Add the following text after last paragraph in this section:

6 When low power functionality is supported and the wut_transmit variable changes, it shall be conveyed to the PMA

7 through PMA_WUT.request primitive.

1 147.3.2.2 Variables

3	link_control	
4 5 6 7 8		This variable is generated by the Auto-Negotiation function. When Auto-Negotiation is not present or Auto-Negotiation is disabled, link_control has a default value of ENABLE, and may be provided by implementation-dependent functionality. <u>When low power functionality</u> is present this variable may be controlled by the power state function. When set to DISABLE, all PCS functions are switched off and no data can be sent or received.
9		Values: ENABLE or DISABLE
10	Add these variables t	to the end of the variable list:
11	suspend_cnt	
12		This variable is used to count the number of symbols transmitted during SUSPEND
13	wut_cnt	
14		This variable is used to dimension the duration of WUT transmitted during WUP
15	wut_transmit	
16 17		Value of a wake-up tone transmission request to be conveyed to PMA via the PMA_WUT.request primitive.
18	147.3.2.4 Functior	IS

2 *Replace existing variable descriptions with descriptions below.*

19 *Change Table 147-1 as follows (unchanged rows not shown):*

Table 147-1--4B/5B Encoding

RX_DV	RX_ER	RXD<3:0>	Indication
Т	N/A	01101	ESD/HB/SUSPEND

20

21 147.3.2.5 State diagram

22 Replace figure 147-4—PCS Transmit state diagram, part a

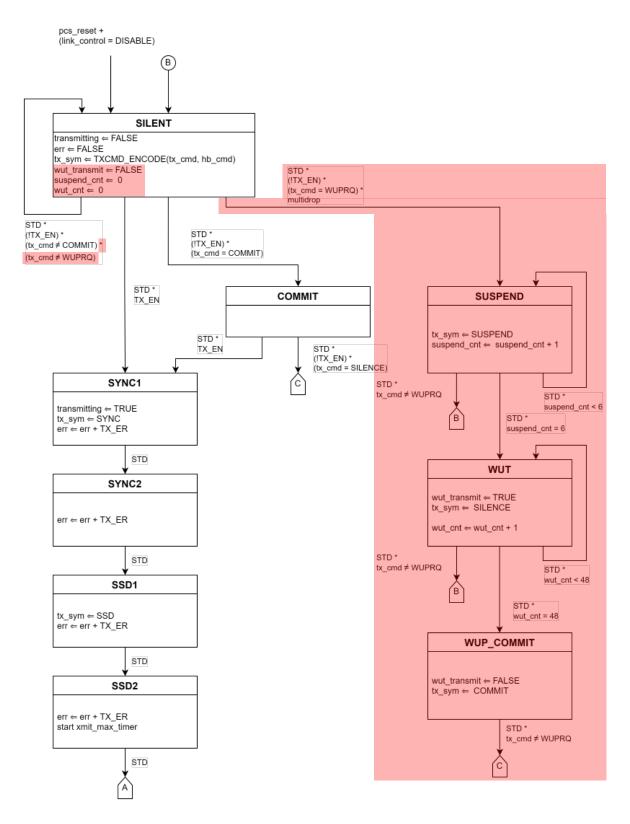


Figure 147-4--PCS Transmit state diagram, part a

1 **147.3.3 PCS Receive**

2 147.3.3.1 PCS Receive Overview

3 *Modify the fifth paragraph as follows.*

During the WAIT_SYNC state, the PCS notifies the RS of a received BEACON indication by the means of the MII as specified in 22.2.2.8. When a sequence of at least two consecutive 'N' symbols is received, the MII signals RX_DV,
RX_ER, and RXD<3:0> are set to the BEACON indication as shown in Table 22–2. Additionally, the PCS notifies the RS of a received COMMIT or SUSPEND indication by the means of the MII as specified in 22.2.2.8. When a sequence of at least two consecutive SYNC is received, the MII signals RX_DV, RX_ER, and RXD<3:0> are set to the COMMIT indication as shown in Table 22–2. When a sequence of at least two consecutive SUSPEND is received in a multidrop configuration, the MII signals RX_DV, RX_ER, and RXD<3:0> are set to SUSPEND indication as

11 <u>shown in Table 22-2.</u>

12 147.3.3.7 State diagrams

13 Add the additional exit path from the WAIT_SYNC state of PCS Receive state diagram, part a (Figure 147-7) as shown.

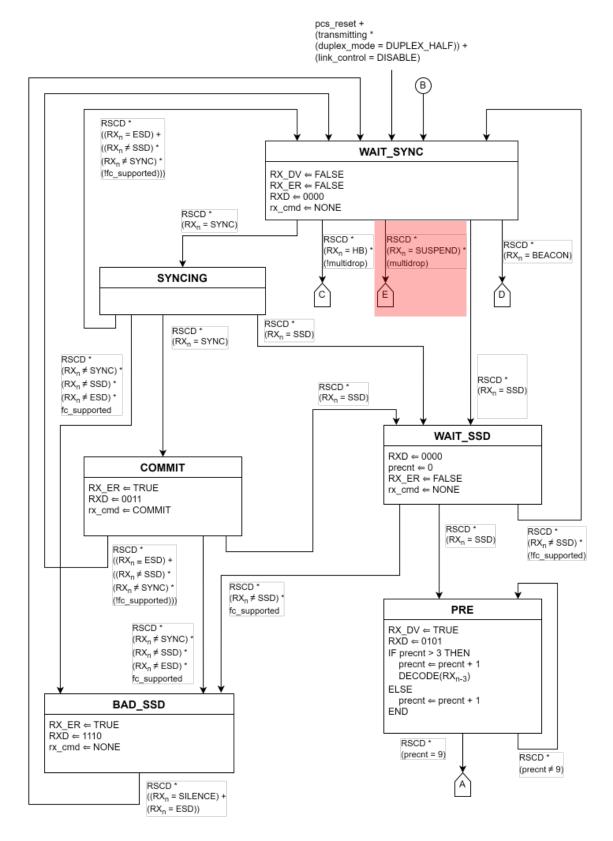


Figure 147-7--PCS Receive state diagram, part a

1 Add the additional SUSPEND and SUSPEND2 states to PCS Receive state diagram, part b (Figure 147-8) as shown.

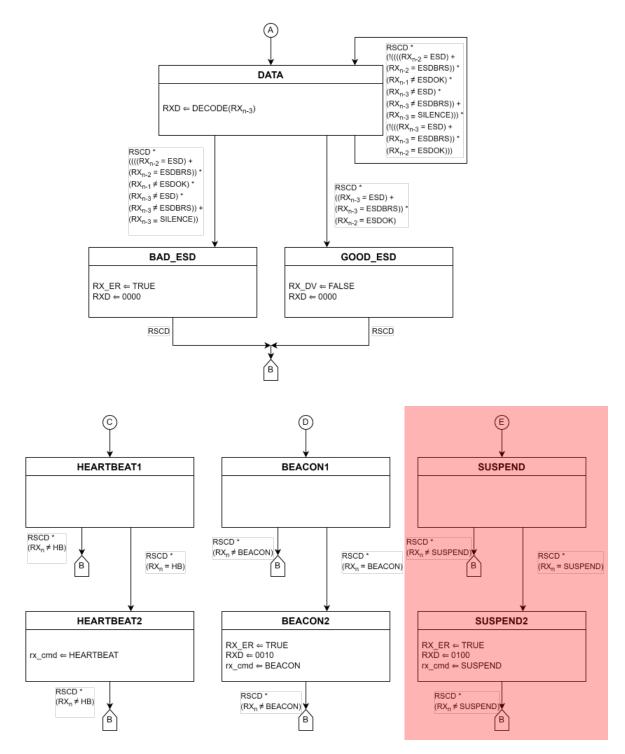
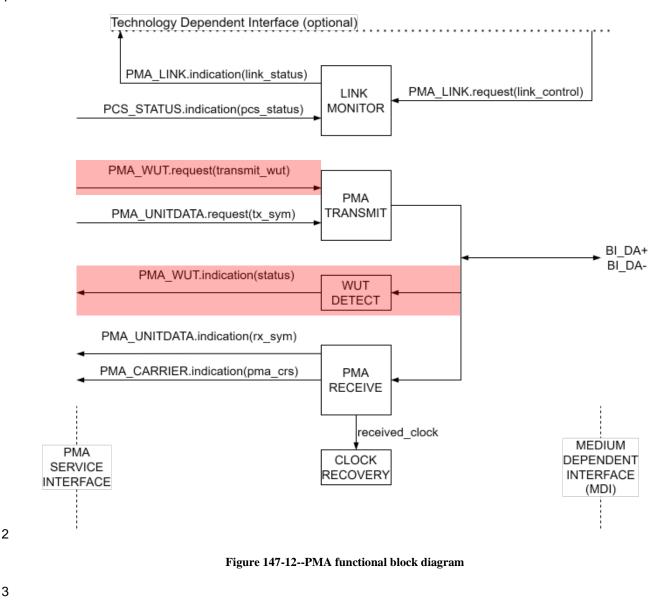
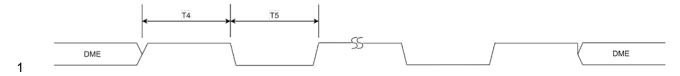



Figure 147-8--PCS Receive state diagram, part b

3 147.4 Physical Medium Attachment (PMA) sublayer

4 Replace PMA functional block diagram Figure 147-12 as below:



4 147.4.2 PMA Transmit function

5 *Modify the opening sentence*

During transmission, <u>if PMA_WUT.request is inactive (most recent request had transmit_wut parameter set to</u>
 <u>FALSE</u>), PMA_UNITDATA.request conveys the tx_sym variable to the PMA.

- 8 Add the following text to the end of section 147.4.2
- 9 If a PMA_WUT.request is active (most recent request had transmit_wut parameter set to TRUE) then it shall transmit
- 10 <u>a single frequency tone on BI DA as per the timing outlined below.</u>

Figure 147-14--WUT encoding

2

Table 147-2--Table 147-3--WUT timings

Parameter		Minimum	Nominal	Maximum	Units of
name	Description	value	value	value	measure
T4	Tone high period [†]	-100ppm	800	+100ppm	ns
T5	Tone low period [†]	-100ppm	800	+100ppm	ns
† Should be interpreted as an average period measurement.					

3

5 147.4.5 WUT Detect function

- 6 The WUT Detection function comprises a detector for WUT on a single balanced pair of conductors, BI_DA. It notifies
 7 the PHY of the detected WUT via the status parameter of the PMA_WUT.indication primitive.
- 8 The WUT Detect function shall be executed whenever the presence or absence of a WUT is detected on the MDI.
- 9 The WUT Detect function carries out the following tasks:
- 10 PMA_WUT.indication(status) set to DETECTED when WUT is detected.
- 11 PMA_WUT.indication(status) reset to NOT_DETECTED when WUT is not detected.

⁴ Add the following section after147.4.4 Link Monitor function:

1	148 PLCA Reconciliation Sublayer (RS)			
2	148.4 PLCA Reconciliation Sublayer Operation			
3	148.4.4 PLCA Control			
4	148.4.4.1 PLCA C	ontrol state diagram		
5	Insert the following t	text at the end of this section		
6 7	If the optional Power the necessary condition	Management Client is supported a WUP transmission request will be forwarded to the PCS when ions are present.		
8	148.4.4.2 Variable	S		
9	Update the variables	s as shown below.		
10	[]			
11	<u>wur</u>			
12 13		This variable is set to TRUE by the Wakeup.request service primitive and reset when the wur_timer elapses.		
14		Values: TRUE or FALSE		
15	receiving			
16		Defined as: $(RX_DV = TRUE) + (rx_cmd = COMMIT)$		
17		Values: TRUE or FALSE		
18	tx_cmd			
19		Command for the PLCA data state diagram to convey to the PHY via the MII.		
20		Values : NONE, <u>WUPRQ.</u> BEACON or COMMIT		
21	rx_cmd			
22		Encoding present on RXD<3:0>, RX_ER, and RX_DV as defined in Table 22-2.		
23		Values:		
24 25		BEACON: PLCA BEACON indication encoding present on RXD<3:0>, RX_ER, and RX_DV		
26 27		COMMIT: PLCA COMMIT indication encoding present on RXD<3:0>, RX_ER, and RX_DV		
28		SUSPEND: SUSPEND indication encoding present on RXD<3:0>, RX_ER, and RX_DV		
29 30		NONE: PLCA BEACON, COMMIT, or SUSPEND indication encoding not present on RXD<3:0>, RX_ER, and RX_DV		
31	[]			
32	148.4.4.4 Timers			

Add the following new timer.

1 <u>wur timer</u>

2 Defines the duration of the WUP request for the PHY to encode.
3 Duration: 316 BT +/- 1 BT
4

5 **148.4.6 State Diagram**

6 Update Figure 148-3 and 148-4 with the following.

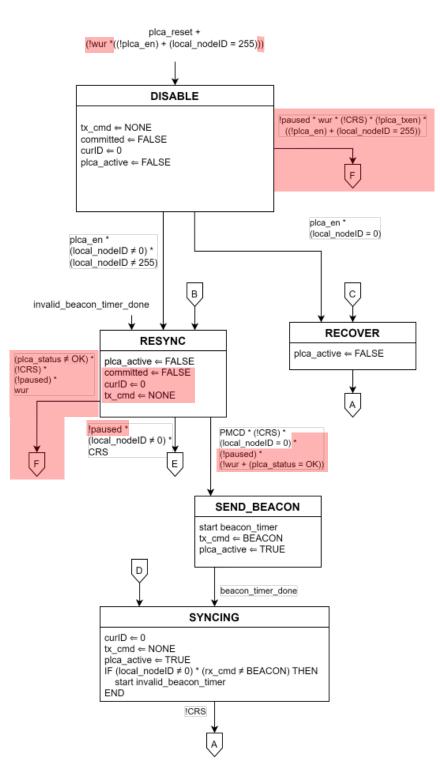
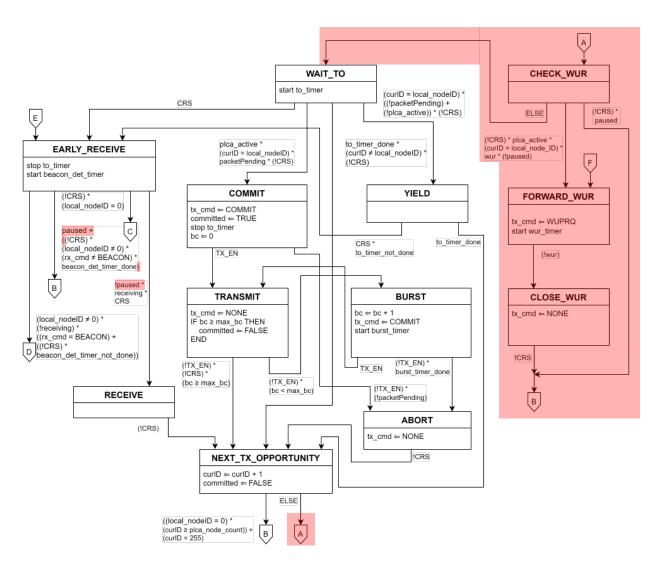



Figure 148-3--PLCA Control state diagram, part a

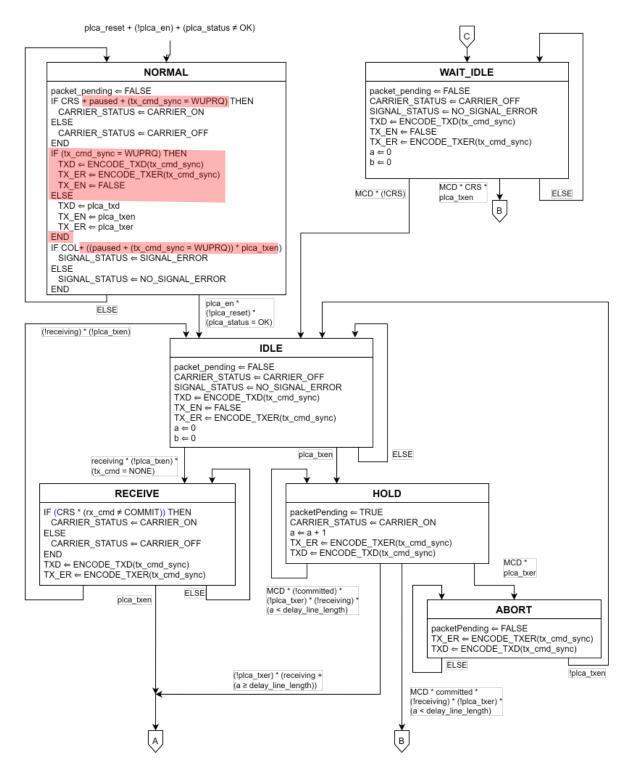

2

Figure 148-4--PLCA Control state diagram, part b

3 148.4.5 PLCA Data

4 148.4.5.7 State Diagram

5 Update Figure 148-5—PLCA Data state diagram, part a with this one.

1

Figure 148-5—PLCA Data state diagram, part a

2 148.4.7 PLCA Pause

³ Add this section after 148.4.6 PLCA Status.

1 148.4.7.1 PLCA Pause state diagram

The PLCA Pause state diagram is responsible for reporting when a recent SUSPEND request has been received. The
PLCA Pause function shall conform to the PLCA Pause state diagram in Figure 148- 148-8 and associated state
variables and timers.

5 **148.4.7.2 Variables**

- 6 plca_paused 7 Controls the generation of transmit opportunities in the PLCA Control and Data state 8 diagrams. While set to TRUE, the generation of TOs is suspended and the RS does not convey 9 data to the PHY. 10 Values : TRUE or FALSE 11 148.4.7.3 Timers 12 resume timer 13 Defines the time the pause variable is maintained TRUE after the PHY stops reporting a 14 wake-up indication on the MII. 15 Duration : 240 BT +/- 5 BT
- 16 148.4.7.5 State diagram

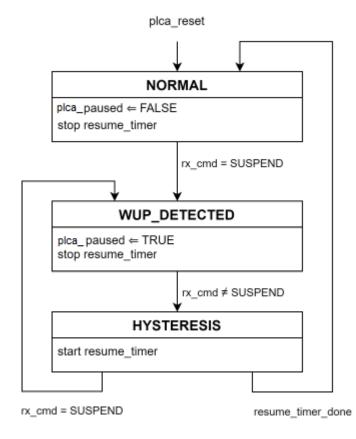


Figure 148-8--PLCA Pause state diagram